Spring symposium 2017 Radiation Protection in Radiology FANC, Brussels

National DRLs in radiology Evolution of the methodology and future challenges

22/04/2017

Thibault Vanaudenhove, Dr. Ir. Thibault.Vanaudenhove@fanc.fgov.be

Federal Agency for Nuclear Control (FANC)

Health & Environment – Health protection

Official Journal

L 13

of the Furanean Union

Article 106

Transposition

1. Member States shall bring into force the laws, regulations and administrative provisions necessary to comply with this Directive by 6 February 2018.

★ Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom

FANC

federal agency for nuclear control

• Definition

(20) "diagnostic reference levels" means dose levels in medical radiodiagnostic or interventional radiology practices, or, in the case of radio-pharmaceuticals, levels of activity, for typical examinations for groups of standard-sized patients or standard phantoms for broadly defined types of equipment;

• Establishment

2. Member States shall ensure the establishment, regular review and use of diagnostic reference levels for radiodiagnostic examinations, having regard to the recommended European diagnostic reference levels where available, and where appropriate, for interventional radiology procedures, and the availability of guidance for this purpose.

• Use

(f) appropriate local reviews are undertaken whenever diagnostic reference levels are consistently exceeded and that appropriate corrective action is taken without undue delay.

• Use

2. Member States shall ensure that depending on the medical radiological practice, the medical physics expert takes responsibility for dosimetry, including physical measurements for evaluation of the dose delivered to the patient and other individuals subject to medical exposure, give advice on medical radiological equipment, and contribute in particular to the following:

(a) optimisation of the radiation protection of patients and other individuals subject to medical exposure, including the application and use of diagnostic reference levels;

- For which procedures do we have to establish DRLs?
 - In function of frequency and dose contribution
 - Well established
- For which dosimetric quantities do we have to establish DRLs?
 - K_a, DAP, DLP, CTDI_{vol}, AGD, etc.
 - Relatively well established but under discussion (e.g. SSDE)

Table 6: To	op 20 Exams
	Exam type
	or category
	Plain film radiography
	1. Chest/thorax
	2. Cervical spine 3. Thoracic spine
	4. Lumbar spine (inc. LSJ)
	5. Mammography
	6. Abdomen
	7. Pelvis & hip
	Radiography/Fluoroscopy 8. Ba meal 9. Ba enema 10. Ba follow 11. IVU 12. Cardiac angiography
	All angiography CT
	13. CT head
	14. CT neck 15. CT chest
	16. CT spine
	17. CT abdomen
	18. CT pelvis 19. CT trunk
	All CT
	Interventional
	20. PTCA All interventional
	An interventional
	TOTAL 1-20

European Commission, Radiation Protection 154, European Guidance on Estimating Population Doses from Medical X-Ray Procedures, 2008

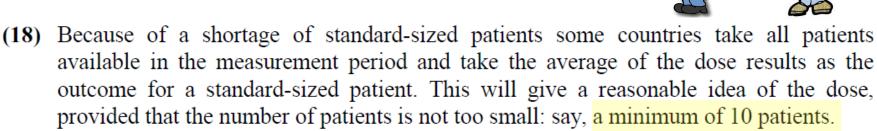
- How do we establish DRLs?
 - from practitioners' experience?
 - from existing values? (european, other countries?)
 - from dose distributions?
 - from local surveys?
 - from national surveys?
 - from international surveys?

• How do we establish DRLs?

3. PROCEDURES FOR ESTABLISHING DIAGNOSTIC REFERENCE LEVELS

3.1. Diagnostic Radiology

(24) In accordance with the MED, DRLs should be established both for diagnostic radiology and for nuclear medicine, and if they are consistently exceeded investigation and appropriate corrective action should be taken. Therefore, in diagnostic radiology this level should be higher than the median or mean value of the measured patient doses or doses in a phantom. Given that the curve giving the number of examinations and their doses is usually skewed with a long tail, the level of the 75th percentile seems appropriate. The use of this percentile is a pragmatic first approach to identifying those situations in most urgent need of investigation.


European Commission, Radiation Protection 109, Guidance on Diagnostic Reference Levels (DRLs) for Medical Exposures, 1999

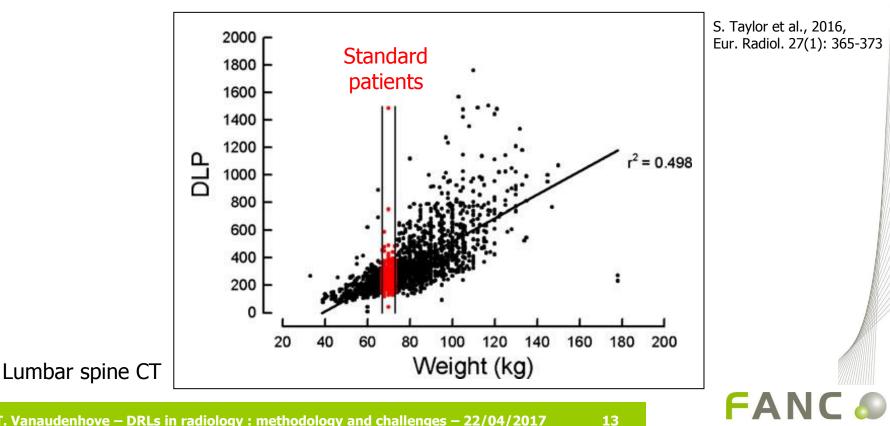
- How do we establish DRLs?
 - The question of <u>standard-sized patients</u>
 - The question of the distribution
 - The question of pooling

- How do we establish DRLs?
 - The question of <u>standard-sized patients</u>
 - 70 kg
 - + 20 cm AP trunk thickness
 - 70 ± 3 kg ; 70 ± 10 kg
 - not considered:

European Commission, European Guidelines on Quality Criteria for Diagnostic Radiographic Images, EUR 16260 EN, June 1996 European Commission, Radiation Protection 109, Guidance on Diagnostic Reference Levels (DRLs) for Medical Exposures, 1999

- How do we establish DRLs?
 - The question of <u>standard-sized patients</u>
 - First Belgian survey (2006-2010)

Examination		Number of	All patients			70 ±	3 kg		d patie 5 kg	nts 70 <u>±</u> 10 kg		proposed DRL (cGy.cm²)	
		rooms	P25	P75		P25	P75	P25	P75	P25	P75	P25	P75
Abdomen		71	99	337		133	330	129	322	118	315	120	330
Pelvis face	(AP)	111	120	396		176	441	174	447	169	458	170	450
Thorax PA		97	11	34		13	36	13	36	13	36	13	35
Thorax lateral		87	31	98		42	109	42	113	40	112	40	110
Thorax bed		30	11	23		12	22	12	21	11	21	12	25
Lumbar spine total		90	640	2090		780	2210	790	2220	760	2150	750	2100
	face	79	89	290		99	270	100	276	97	275	95	280
	profile	77	189	525		211	506	209	508	207	508	200	500
Skull total		27	59	168		-	-	-	-	-	-	60	150
	face	17	4	58		-	-	-	-	-	-	25	(60)
	profile	18	21	54		-	-	-	-	-	-	20	(50)


#patients : from 1000 to 5000

- How do we establish DRLs?
 - The question of <u>standard-sized patients</u>
 - First Belgian survey (2006-2010)
 - FANC-decree patient dosimetry (2011)
 - \rightarrow no more weight
 - \rightarrow 20 data (sufficient ?)

- How do we establish DRLs?
 - The question of <u>standard-sized patients</u>

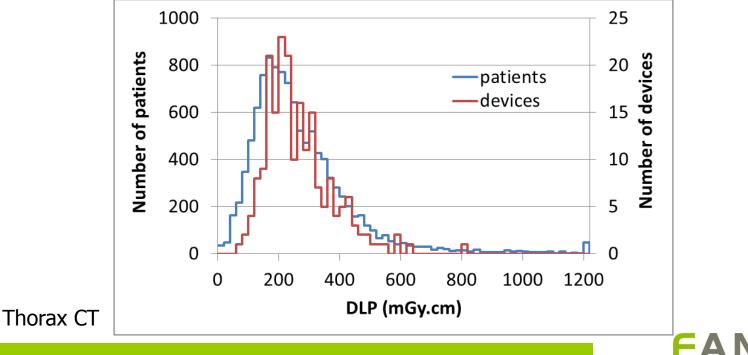
- How do we establish DRLs?
 - The question of <u>standard-sized patients</u>
 - First Belgian survey (2006-2010)
 - FANC-decree patient dosimetry (2011)
 → no more weight
 → 20 data (sufficient ?)
 - ICRP 2016 (draft) :

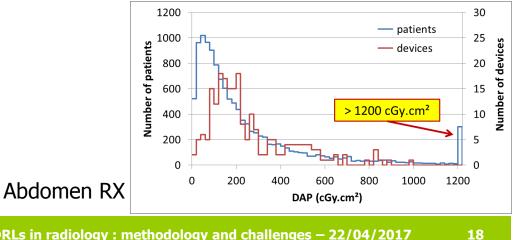
ICRP, Diagnostic Reference Levels in Medical Imaging, Draft for consultation, 2016

(86) Where automated methods of recording values of DRL quantities are available, it may be possible to collect data for large numbers of patients (>100) at each facility (Goenka et al., 2015; MacGregor et al., 2015). Where this is possible, restrictions on weight can be removed. Results rely on the accuracy of data entry, and may not include patient weight. Exclusion of the highest and lowest 5% of the data will eliminate outliers and data with gross errors from the analysis. Specific considerations for development of DRLs for paediatric patients are discussed in Chapter 6.

• Belgian DRLs

– 2012 : CT


2013 : CT	CTDIve	տ (mGy)	DLP (mGy.cm)							
	Single ex	amination	Single ex	amination	Full examination					
Examination	Q1	Q3	Q1	Q3	Q1	Q3				
Abdomen	7	13	280	600	330	780				
Angio CT of the thorax	6,5	20	160	420	190	460				
Cardiac (CCTA)	9	47	125	620	190	800				
Colon	4	9	180	410	300	600				
Cervical spine	15	32	230	530	240	540				
Lumbar spine	17,5	32	340	680	340	680				
Skull (brain)	38	58	570	980	650	1020				
Sinuses	3	8	40	110	40	110				
Thorax	5	10	160	340	160	340				
Thorax-abdomen	6,5	13	280	640	525	1050				


- How do we establish DRLs?
 - The question of the distribution
 - Belgian DRLs : based on P75 calculated from **all patients**
 - \rightarrow sensitive to outliers, erroneous data
 - → bias in the representation of departments/devices (More and more departments send more than 20 data (up to 2000!))
 - <u>Remember</u> : DRL is a tool for standard practices
 → should be representative for the practices and devices
 → use of the distribution on <u>average per device</u>

- How do we establish DRLs?
 - The question of the distribution
 - 2014 : CT and RX, MAM, IR

- How do we establish DRLs?
 - The question of the <u>distribution</u>
 - 2014 : CT and RX, MAM, IR
 - → use of the distribution on **average per device**
 - → outliers?
 - \rightarrow exclusion of highest and lowest 5% ?
 - \rightarrow low and/or high cut-off values ? (done for Belgian RX DRLs 2014)

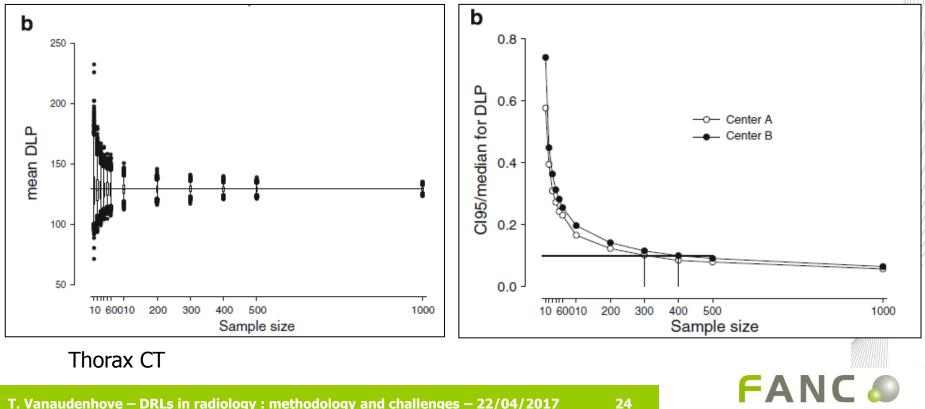
- How do we establish DRLs?
 - The question of the distribution
 - 2015 : CT
 - use of the distribution on median per device
 - ightarrow lower sensitivity to outliers/erroneous data \odot
 - → better estimate of the "mean" practice

- How do we establish DRLs?
 - The question of the distribution
 - 2015 : CT
 - use of the distribution on median per device
 - ightarrow lower sensitivity to outliers/erroneous data \odot
 - → better estimate of the "mean" practice
 - ICRP 2016 (draft) :
- The Commission now recommends that the median value (not the mean value) for the DRL quantity from each of the facilities in the survey should be used. National DRLs should be set as the 75th percentile of median values obtained in a sample of representative centres.

- How do we establish DRLs?
 - The question of the distribution
 - ICRP 2016 (draft) :

(86) Where automated methods of recording values of DRL quantities are available, it may be possible to collect data for large numbers of patients (>100) at each facility (Goenka et al., 2015; MacGregor et al., 2015). Where this is possible, restrictions on weight can be removed. Results rely on the accuracy of data entry, and may not include patient weight. Exclusion of the highest and lowest 5% of the data will eliminate outliers and data with gross errors from the analysis. Specific considerations for development of DRLs for paediatric patients are discussed in Chapter 6.

- How do we establish DRLs?
 - The question of pooling
 - More and more departments send more than 20 data (up to 2000!) – but not all!
 - Sometimes, very few data are sent for some procedures
 → median values for dataset with less than 5 data not included in the distribution (CT 2015)
 - Sometimes, big centers send 20 data for each procedure
 → is the median value representative for their practices?


- How do we establish DRLs?
 - The question of pooling
 - Sometimes, big centers send 20 data for each procedure
 → is the median value representative for their practices?
 - ICRP 2016 (in draft) :

(88) A survey of the DRL quantity for a particular examination in a hospital would normally involve the collection of data for at least 20 patients for radiographic examinations (IPSM, 1992). However, data for more patients will be required when there are a greater variation and wide range of results. This is especially true for fluoroscopy, where differences in patients' disease states and operator technique contribute to the variation. A group of at least 30 patients within the agreed weight range is preferable for diagnostic fluoroscopy procedures (IPSM, 1992). Even larger numbers of patients may be needed for interventional procedures (Chapter 4). For manimography, 50 patient measurements are recommended because of variation in breast size.

- How do we establish DRLs?
 - The question of pooling

S. Taylor et al., 2016, Eur. Radiol. 27(1): 365-373

federal agency for nuclear control

- How do we establish DRLs?
 - The question of pooling
 - To assess a good estimate of the median for one device
 → > 100 patients
 - To assess a good estimate of the median or P75 from the distribution of the median values per device

25

→ function of the **number of devices**!!

- How do we establish DRLs?
 - The question of pooling

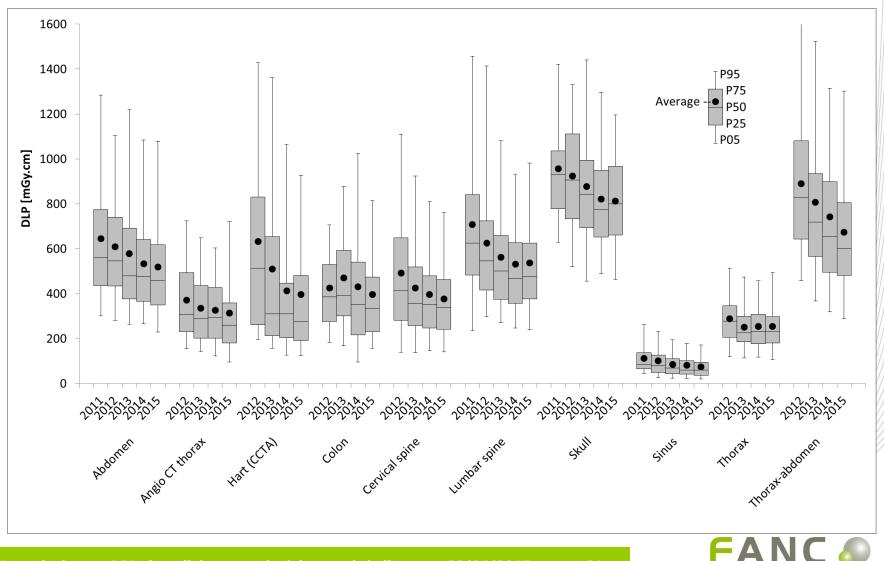
T. Vanaudenhove et al., 2017, To be published

- How do we establish DRLs?
 - The question of pooling
 - To assess a good estimate of the median for one device
 → > 100 patients
 - To assess a good estimate of the median or P75 from the distribution of the median values per device
 - → function of the **number of devices**!!
 - ➔ less dependancy with the number of data per device when the number of devices is larger than 20-30

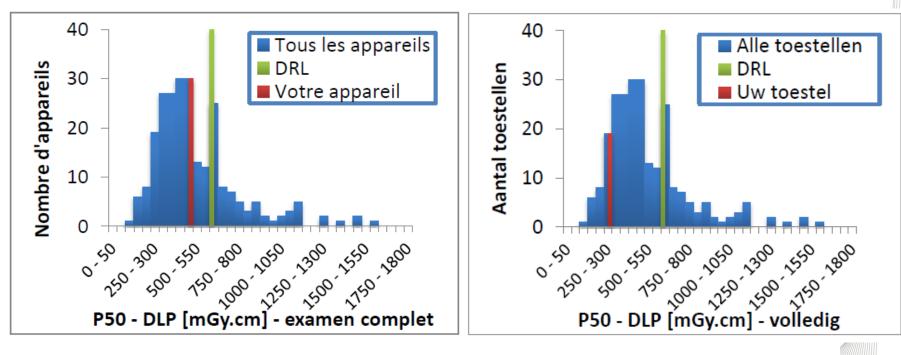
- How do we establish DRLs?
 - The question of pooling
 - ICRP 2016 (in draft) :

2.3.2. Facilities

(75) The first step in setting DRLs is to carry out surveys of patient examinations across the geographical area to which the DRL will apply. In a developed country with hundreds of healthcare facilities, a survey of them all would be a mammoth task. A random selection of a small proportion of all the healthcare facilities as a sample can provide a good starting point. Thus, results from 20-30 facilities are likely to be sufficient in the first instance, if a sufficient number of patients from each facility are included (Section 2.3.3). In a small country with fewer than 50 facilities, an initial survey of 30% to 50% of the facilities may suffice. In subsequent surveys, as the data collection infrastructure improves, the number of facilities included can be extended to give more representative coverage.



- All this seems to be only statistics... BUT :
 - DRL is a **quantitative** tool/indicator
 - → must be well-defined, well-established

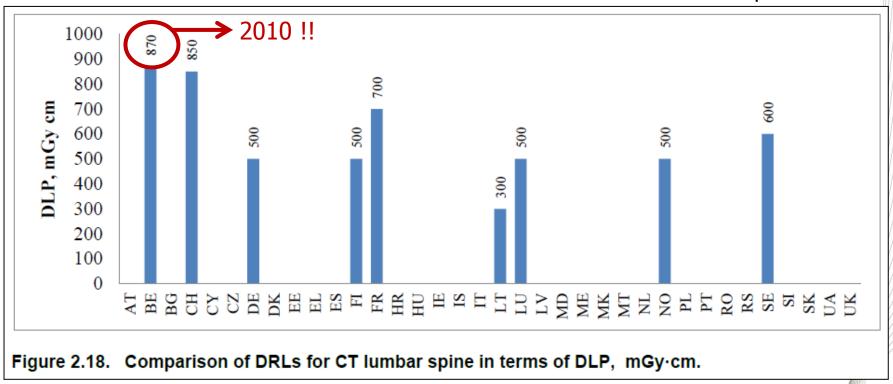

- All this seems to be only statistics... BUT :
 - DRL is a **<u>quantitative</u>** tool/indicator
 - → must be well-defined, well-established
 - ➔ should allow follow-up

Follow-up

 January 2017 : Personalized feed-back to departments (CT 2015)

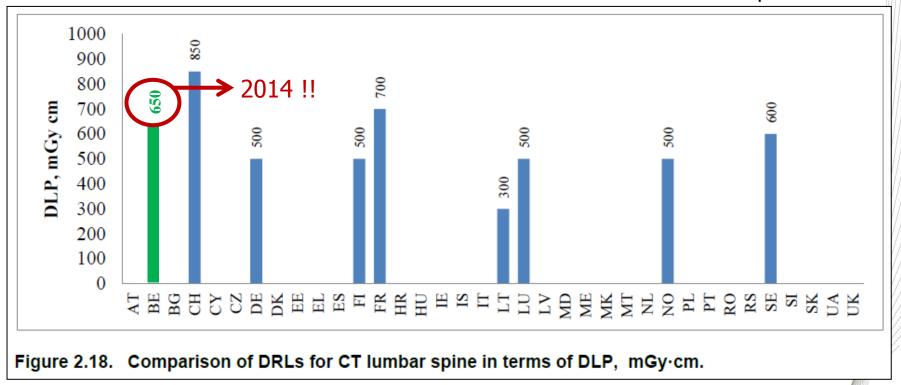
- All this seems to be only statistics...
- BUT:
 - DRL is a <u>quantitative</u> <u>tool/indicator</u> that
 - → must be well-defined, well-established
 - ➔ should allow follow-up

• All this seems to be only statistics...


BUT:

- DRL is a <u>quantitative</u> <u>tool/indicator</u> that
 - → must be well-defined, well-established
 - ➔ should allow follow-up

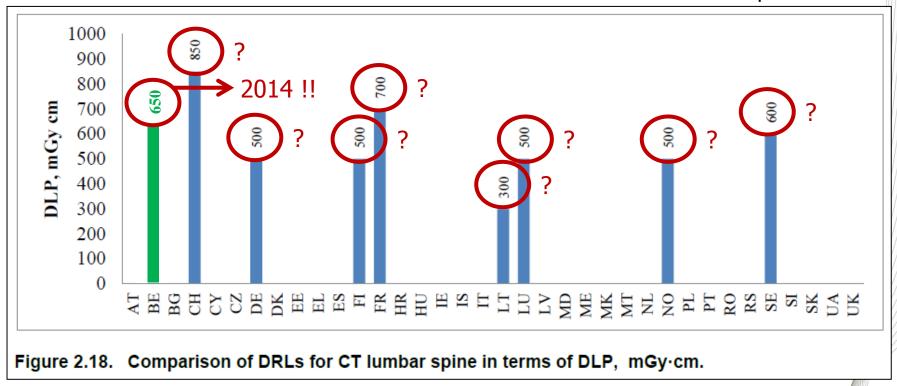
→ should allow international comparison, the methodology must be similar!!


Lumbar spine CT

European Commission, Radiation Protection Nº180, Diagnostic Reference Levels in Thirty-six European Countries, 2014

Lumbar spine CT

European Commission, Radiation Protection Nº180, Diagnostic Reference Levels in Thirty-six European Countries, 2014



• e.g. France : DRL <> P75

Type d'examen	м	PDI	en mGy.	cm	– cv	% NRD	> NRD	Variation
	N	NRD	75 ^e	25 ^e				
Encéphale	492	1050	921	729	18 %	- 12 %	5,9 %	- 7 %
Thorax	389	475	413	269	31 %	- 18 %	12 %	- 10 %
Thorax-abdomen-pelvis	191	1000	950	668	24 %	- 5 %	18 %	- 9 %
Abdomen-pelvis	385	800	709	499	25 %	- 11 %	9,1 %	- 7 %
Rachis lombaire	266	700	824	605	27 %	+ 18 %	52 %	s.o.*

Lumbar spine CT

European Commission, Radiation Protection Nº180, Diagnostic Reference Levels in Thirty-six European Countries, 2014

Spring symposium 2017 Radiation Protection in Radiology FANC, Brussels

National DRLs in radiology Evolution of the methodology and future challenges

22/04/2017

Thibault Vanaudenhove, Dr. Ir.

Thibault.Vanaudenhove@fanc.fgov.be

Federal Agency for Nuclear Control (FANC)

Health & Environment – Health protection

